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1. If S is a non-empty subset of R which is bounded from above but not below. Suppose
the following holds: [x, y] ⊂ S, for all x, y ∈ S. Show that S is either (−∞, α] or
(−∞, α) for some α ∈ R.

Solution. By the completeness of R, we know that supS exists. Let x ∈ S.
Then clearly we have x ≤ supS, so S ⊂ (−∞, supS]. It remains to show that
(−∞, supS) ⊂ S, in which case either S = (−∞, supS) or S = (−∞, S]. Suppose
for the sake of contradiction that there is a y ∈ (−∞, supS) but y /∈ S. Since
y ≤ supS, we can find a x1 ∈ S such that y < x1 ≤ supS. Also, since S is not
bounded from below, we can likewise find an x2 ∈ S such that x2 < y. Then since
both x1, x2 ∈ S, by assumption we have that [x2, x1] ⊂ S but this contradicts the
fact that y /∈ S. Hence we must have that y ∈ S. So we see that S is either (−∞, α)
or (−∞, α] where α = supS. ◀

2. Using ε−N terminology, show the followings:

(a) lim
n→∞

n

n2 − 2
= 0.

(b) lim
n→∞

(2n)
1
n = 0.

(c) lim
n→∞

2n

n!
= 0.

Solution. (a) Let ε > 0 be given. Note that for n ≥ 2, n2 − 2 ≤ n2 −n and so we
have ∣∣∣∣ n

n2 − 2

∣∣∣∣ ≤ ∣∣∣∣ n

n2 − n

∣∣∣∣ = ∣∣∣∣ 1

n− 1

∣∣∣∣ .
So taking N >

1

ε
+ 1, we have for all n ≥ N∣∣∣∣ n

n2 − 2

∣∣∣∣ ≤ ∣∣∣∣ 1

n− 1

∣∣∣∣ < 1
1
ε
+ 1− 1

= ε

as required.

(b)

(c) Let ε > 0 be given. For n >
1

2
, we note that (2n)

1
n > 1, so for each n we can

write (2n)
1
n = 1 + kn for a sequence of positive numbers kn. Then, if we can

show that kn → 0 as n → ∞, then we would have∣∣∣(2n) 1
n − 1

∣∣∣ = |1 + kn − 1| = |kn| < ε
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for n ≥ K(ε) for some K(ε) ∈ N, and we would be done.

Since we have (2n)
1
n = 1 + kn =⇒ 2n = (1 + kn)

n, we use the binomial
theorem to write

2n = (1 + kn)
n = 1 + nkn + 2n(n− 1)k2

n + · · · ≥ 1 + nkn + 2n(n− 1)k2
n.

Re-arranging, we have

k2
n ≤ 2(2n− 1)

n(n− 1)
≤ 4n

n(n− 1)
=

4

n− 1
.

So choosing K(ε) >
4

ε
+ 1, we are done.

(d) Let ε > 0 be given. Note that for n ≥ 2, we have

2n

n!
=

2 · 2 · · · · · 2 · 2
1 · 2 · · · · · (n− 1) · n

≤ 4

n
.

So we have that for N >
4

ε
, we have for all n ≥ N∣∣∣∣2nn!

∣∣∣∣ ≤ 4

n
< ε

as required.

◀

3. Suppose (xn) is a sequence of positive real number such that limn→∞
xn+1

xn

= L ∈ R.

(a) Show that (xn) is convergent if L ∈ [0, 1).

(b) Can we conclude the convergence if L = 1? Justify your answer.

Solution. (a) We will show that when L ∈ [0, 1), (xn) converges to 0. Let ε > 0

be given. Then since
xn + 1

xn

converges to L, we know that there is an N ∈ N
such that for all n ≥ N ,

0 <
xn+1

xn

− L < ε ⇔ 0 <
xn+1

xn

< L+ ε.

Since L < 1, α := L + ε0 < 1 for ε0 chosen to be sufficiently small. Then for
n ≥ N , we have that

0 < xn = xN · xN+1

xN

· · · · · xn

xn−1

< xNα
n−N+1.

Since 0 < α < 1, the right hand side converges to 0 as n → ∞ and we conclude
that xn converges to 0 by the squeeze theorem.
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(b) No we cannot conclude the convergence when L = 1. Consider the sequence
xn = n. Then we have that

xn+1

xn

=
n+ 1

n
= 1 +

1

n

which converges to 1. But clearly xn is unbounded from above and hence not
convergent.

◀

4. If x1 =
√
2 and

xn+1 =
√
2 +

√
xn

for all n ∈ N. Show that (xn) is convergent and that xn < 2 for all n ∈ N.

Solution. We first show the upper bound by mathematical induction. Clearly
x1 =

√
2 < 2. Suppose for our inductive hypothesis that xk < 2 for some k ∈ N.

Then we have

xk+1 =
√

2 +
√
xk <

√
2 +

√
2 <

√
2 + 2 = 2.

So (xn) is bounded from above by 2.

We next show that xn is increasing. We have that x2 =
√

2 +
√
1 =

√
3 >

√
2 = x1,

so the base case is satisfied. Suppose for our inductive hypothesis that xk ≤ xk+1

for some k ∈ N. Then we have

xk+2 =
√

2 +
√
xk+1 ≥

√
2 +

√
xk = xk+1

since the square root function is increasing. So xn is increasing.

Then we can conclude that (xn) converges by the Monotone Convergence Theorem.
◀

5. If xn =
n∑

k=1

ak for some sequence (ak). Suppose (xk) is convergent, and (bk) is another

sequence of positive real number which is monotonic increasing and bounded, show

that yn =
n∑

k=1

akbk is convergent.

Solution. Let ε > 0 be given. First note that (bk) converges by the Monotone
Convergence Theorem to some limit, say b ∈ R. Moreover, we have that bk ≤ b for
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all k ∈ N. Let a := lim
n→∞

xn. We want to show that yn converges to ab. We have∣∣∣∣∣
n∑

k=1

akbk − ab

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

akbk − abn + abn − ab

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

k=1

akbk − abn

∣∣∣∣∣+ |abn − ab|

≤

∣∣∣∣∣
n∑

k=1

akbn − abn

∣∣∣∣∣+ |a| |bn − b|

≤ |bn|

∣∣∣∣∣
n∑

k=1

ak − a

∣∣∣∣∣+ |a| |bn − b|

≤ b

∣∣∣∣∣
n∑

k=1

ak − a

∣∣∣∣∣+ |a| |bn − b|

where in the third inequality we used the fact that bk is monotonically increasing
and in the last inequality we used the fact that bk ≤ b for all k ∈ N. Since xn

converges to a, there is an N1 ∈ N such that for all n ≥ N1, we have∣∣∣∣∣
n∑

k=1

ak − a

∣∣∣∣∣ < ε

2b

and since bn converges to b, there is an N2 ∈ N such that for all n ≥ N2, we have

|bn − b| < ε

2a
.

Then taking N = max{N1, N2} yields the desired result. ◀


